
JACK
SLETTEBAK

Jack Slettebak is a Meyerhoff

Scholar with majors in

computer science and

mathematics. He graduated

in December 2015 and is

hoping to pursue a Ph.D.

in Computer Science. His

current interests are in

software engineering, with

a focus on object-oriented

design patterns. He would

like to give special thanks

to his faculty mentor Dr.

Matthias K. Gobbert for

his invaluable guidance

and extended support

throughout the entirety of

this project. He also wants

to acknowledge and thank

his REU teammates Jordi

Wolfson-Pou, Gerald Payton,

and Adam Cunningham,

who helped in previous

research on the topic;

research assistants Samuel

Khuvis and Jonathan Graf,

who guided him in his

research; and Thomas Salter

and David J. Mountain of

the Advanced Computing

Systems Research Program,

who proposed the project

idea upon which his research

was founded. Lastly, he

wants to thank the Office of

Undergraduate Education,

for providing him with an

Undergraduate Research

Award, and the Meyerhoff

Scholars Program for its

financial support.

PUSHING THE LIMITS OF THE
MAYA SUPERCOMPUTER WITH
THE HPCG BENCHMARK

In summer 2014, I was fortunate enough to be selected to participate in
a Research Experience for Undergraduates (REU) hosted here at UMBC.
The REU focused primarily on high-performance computing and how
parallel algorithms can be applied to various computational problems. All of
the participants were assigned to teams and given an accelerated course
on parallel algorithms. We were then exposed to several ongoing research
projects that applied the techniques we learned. My group decided to pursue
a topic under Dr. Thomas Salter of the Advanced Computing Systems
Research Program. This involved performing a set of taxing software tests,
called benchmarks, on maya, one of the two supercomputers at UMBC.
By doing this, we gained valuable information on how the supercomputer
functions. This knowledge can be applied to future research projects
both within and outside the Department of Mathematics and Statistics.
We decided to use the High Performance Conjugate Gradient (HPCG)
benchmark because it is a well-known, respected benchmark that has
its results published. The following paper provides the results of multiple
experiments and explains what these results mean in the context of a
parallel computing environment.

[LEFT] IRC, 2013. Photograph by UMBC Creative Services.

[RIGHT] Computer scientists programming punch cards, 1970s, University Archives,
Special Collections, University of Maryland, Baltimore County (UMBC).

U
M

B
C

 R
E

V
IE

W

V
O

L
. 1

7

|
 1

64

ABSTRACT

Parallel architectures and algorithms sit at the forefront of high-
performance computing as ways to decrease the execution time of
a computationally intense problem. Parallel architecture is hardware
that has multiple cores or multiple threads, and a parallel algorithm
is a software algorithm designed to be able to use multiple cores or
threads simultaneously. The supercomputer maya in the UMBC High
Performance Computing Facility (HPCF) is designed to provide
a resource for the researchers of various disciplines who require a
powerful parallel computer to solve the problems they encounter in
their work. Using the newly developed High Performance Conjugate
Gradient (HPCG) benchmark (www.hpcg-benchmark.org) from
Sandia National Laboratories, this effort identified several runtime
optimizations that allow for maximum performance on maya.
These optimizations nearly doubled the reported performance
of the benchmark from previous tests. A total throughput of 450
GFLOP/s was achieved using only a fourth of the hardware
available on maya.

INTRODUCTION

The supercomputer maya is supported by the High Performance
Computing Facility (HPCF) at the University of Maryland, Baltimore
County (UMBC). It has more than 300 nodes equipped with powerful
multi-core CPUs and several other cutting-edge technologies.
Challenges include creating an environment that yields maximum
performance and even knowing what level of performance should be
expected. To address these challenges, a benchmark may be used to
identify and measure an optimal runtime setup for use in other research
applications. A benchmark is a portable program that runs a specified
task on a system and returns a meaningful metric of the system’s
performance. A useful measure of performance for supercomputers
is the number of FLoating-point OPerations per second (abbreviated
as “FLOP/s”). Because supercomputers are capable of billions of

165 | JA
C

K
 S

L
E

T
T

E
B

A
K

operations per second, our results are reported in GFLOP/s (spoken
as “GigaFLOPs”). One GFLOP/s is equal to exactly 1,000,000,000
FLOP/s.

The High Performance Conjugate Gradient (HPCG) benchmark
(www.hpcg-benchmark.org) from Sandia National Laboratories
was used to test maya. This benchmark was recently developed
to complement the more than 35-year-old High Performance
LINPACK (HPL) benchmark. Both benchmarks solve large systems
of linear equations. HPL solves a dense system of equations, while
HPCG solves a sparse system of equations. Appropriately, the HPL
benchmark uses a direct solver, while the HPCG benchmark uses
a pre-conditioned iterative solver. HPCG reports computational
throughput as a measure of performance. HPCG benchmark results
have been reported for many of the top supercomputers in the world
and are therefore appropriate for establishing comparisons to maya.

Past tests showed that increasing the number of threads led
to an increase in computational throughput.3 A greater increase
in throughput was observed when the number of processes was
increased. Total throughput decreased, however, when the sum of
the number of processes on each node and the number of threads on
each node exceeded 16. This was because although we were spawning
more processes, we had no available hardware to execute them.
In light of this observation, future trials kept the number of cores
assigned to each job equal to the sum of the number of processes and
the number of threads.

It was also found that an increase in throughput could be
achieved by increasing the problem size.3 As the problem size
increased, so did the density of calculations, which resulted in higher
throughput and less time spent fetching memory.

HARDWARE SPECIFICATION

This report focuses on the 72 newest nodes in maya, 69 of which are
compute nodes. Each of these compute nodes has two eight-core
2.6-GHz Intel® E5-2650v2 Ivy Bridge CPUs. Figure 1 shows a
schematic of one of the compute nodes. Each core has dedicated
32 kB of L1 cache and 256 kB of L2 cache; 20 MB of L3 cache
is shared among the eight cores of each CPU. The 64 GB of each
node’s memory is formed by eight 8-GB DIMMs, and each CPU is
connected to four DIMMs. Two QuickPath Interconnect (QPI) links
connect the two CPUs of each node, and the nodes are connected to
each other through a Quad data rate (QDR) InfiniBand interconnect.

U
M

B
C

 R
E

V
IE

W

V
O

L
. 1

7

|
 1

66

SOFTWARE

The HPCG benchmark is capable of integrating several different
libraries and data structures. The options available thanks to this
capability have a large impact on the execution of the benchmark
and consequently its total computational throughput. In our tests,
we made use of Message Passing Interface (MPI)7 for process-level
parallelism and OpenMP® for thread-level parallelism. We ran the
benchmark with varying numbers of threads and processes.

In the context of this paper, a process is a task that requires
computation time on a CPU and that is represented by a Process
Control Block (PCB) and an independent memory space for
associated data. The PCB holds all of the state variables of the
process. The memory needed to maintain these features can reduce
throughput by increasing the number of cache misses and the amount
of input/output between the CPU and main memory. Also, because
each process has its own memory space, each process must use MPI
to communicate essential data.7 While communicating with main
memory or sending and receiving messages through MPI, a process is
idling, which decreases total throughout.

FIGURE 1. Illustration of compute node architecture with dual sockets, showing the
physical cores within each socket, on-chip cache, and memory channels.

167 | JA
C

K
 S

L
E

T
T

E
B

A
K

Threads can be thought of as stripped-down processes. Like
processes, threads require computation time from the CPU, but
they lack several features of a process. Specifically, a thread has no
PCB or independent memory space; instead, it shares the memory
of its parent process with any other threads that may exist within it.
Because of this, threads waste less memory than processes do, and
an explicit interface is not needed to pass data between threads
within a process. As a result, the computational efficiency of a thread
is greater than that of a process.

The HPCG benchmark measures throughput in units
of GFLOP/s (Giga FLoating-point OPerations per second). A
floating-point operation is any arithmetic operation between stored
numbers. An increase in GFLOP/s corresponds to an increase
in performance.

The HPCG benchmark is a program that uses a conjugate
gradient solver on a 3-D chimney domain. It was written in portable
C++ code and was designed to be able to run on any number of
processors. HPCG allows the user to specify sub-block sizes on each
processor and then generates a 27-point finite difference matrix.4

The problem generated by this benchmark is essentially a
single-degree stationary heat diffusion model with Dirichlet boundary
values of zero. Its global domain dimensions are Nx × Ny × Nz where
Nx = nxpx, Ny = nypy, and Nz = nzpz. The numbers nx, ny, and nz are
the sub-block dimensions in the x-, y-, and z-dimensions, respectively.
The benchmark uses a total number of MPI processes pN, which is
factored into three dimensions px × py × pz. Each MPI process is then
assigned a sub-block.

In the setup phase, a sparse linear system is created by
constructing a 27-point stencil at each grid point in the 3-D domain.5
The three-dimensional stencil at an interior mesh point is sketched in
Figure 2. The equation at a given point relies on the values at its specific
location as well as the values at the other 26 points. The setup is weakly
diagonally dominant for the interior points on the domain, while the
setup for the boundary points is strongly diagonally dominant. The
setup for this matrix implements the synthetic conservation principle
for the interior points and illustrates the impact on the boundary
equations of having Dirichlet boundary values of zero.

The properties of the linear system include all initial guesses
that contain at least one value of 0, a matching right-hand-side
vector, and a solution vector that equals 1. The system matrix is a
non-singular, positive-definite matrix. It has 27 nonzero entries per
equation for interior points and 7 to 18 nonzero entries per equation

U
M

B
C

 R
E

V
IE

W

V
O

L
. 1

7

|
 1

68

for the boundary points. Each mesh point has internal symmetry, as
shown in Figure 2. The values at the mesh points that neighbor an
interior point are symmetric, as shown by the numbers in Figure 2.
These nonzero values form 27 bands of nonzero entries in the system
matrix of the discretized equation.

RESULTS INVOLVING DIFFERENT RUNTIME SETUPS

A previous technical report3 includes several useful insights
regarding the internal algorithm and problem setup in the HPCG
benchmark. Most importantly, it was found that larger sub-block
sizes (nx × ny × nz) resulted in greater throughputs than smaller
sub-block sizes. This is because each larger sub-block created more
unknowns in its system of equations, so the ratio of computation to
communication was higher for each sub-block. The sub-block size
was set to have the maximum dimensions that would fit within the
64 GB of available memory. These dimensions were calculated to be
nx × ny × nz = 160 × 160 × 160.

FIGURE 2. Diagram of the 27-point stencil created at each point in the mesh. Only
the interior mesh points have the symmetry shown here.

169 | JA
C

K
 S

L
E

T
T

E
B

A
K

Using these results3 and results from a senior thesis9 as a
foundation, we sought to optimize the runtime environment at both
the intra-node and inter-node levels. This involved trying different
ways of assigning threads to cores and processes to CPUs at runtime.
It also involved optimizing the environment variables within the
operating system to achieve maximum throughput.

(a) Alternating Process, One-Core Thread with OFA MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 12.79 49.71 68.82 99.89 121.38

32 nodes 35.18 58.83 114.14 195.03 207.40

64 nodes 42.44 125.74 225.44 392.35 ET

(b) Alternating Process, Compact Thread with OFA MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 18.07 48.25 66.72 99.67 121.56

32 nodes 35.05 60.62 116.34 194.64 196.66

64 nodes 55.56 122.16 232.43 392.80 52.59

(c) Socketfill Process, One-Core Thread with OFA MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 16.24 35.55 48.04 60.82 121.97

32 nodes 39.91 58.63 93.81 121.68 224.62

64 nodes 65.51 116.57 186.22 242.40 51.28

(d) Socketfill Process, Compact Thread with OFA MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 16.22 35.47 47.96 61.91 120.53

32 nodes 40.09 58.67 92.61 122.36 180.42

64 nodes 65.98 116.16 186.33 243.51 47.14

TABLE 1. Observed GFLOP/s for local sub-block dimensions nx × ny × nz = 160
× 160 × 160 using combinations of alternating and socketfill process
configurations and compact and one-core thread configurations.
The variable pN represents the number of MPI processes per node
and nt represents the number of threads per MPI process. The notation
ET indicates that the case took excessive time and was not run
to completion.

U
M

B
C

 R
E

V
IE

W

V
O

L
. 1

7

|
 1

70 EXPERIMENTAL DESIGN

Table 1 reports the intra-node results and holds constant the flags
and environment variables that would affect MPI and other inter-
node communications. Modifications were made to the job scheduler
known as Slurm (Simple Linux Utility for Resource Management),
which is used to allocate system resources within maya, and to
OpenMP environment variables, which control the number of
threads spawned during execution. These configurations allowed
us to explore several different allocation schemes for processes
and threads:

a. Alternating	Process,	One-Core	Thread: alternates
sockets when placing MPI processes and places all threads
onto a single core.

b. Alternating	Process,	Compact	Thread: alternates sockets
when placing MPI processes and distributes threads to the
closest vacant cores.

c. Socketfill	Process,	One-Core	Thread: fills one socket
before adding processes to the other socket and places all
threads onto a single core.

d. Socketfill	Process,	Compact	Thread: fills one socket
before adding processes to the other socket and distributes
threads to the closest vacant cores.

Because hyperthreading is disabled, we are forced to use only the
physical cores within each socket. This means that each node on
maya is capable of running up to 16 processes in parallel. Therefore,
to maximize parallelization and avoid context switches, we fix the
product of the number of threads (nt) and the number of processes
(pN) assigned to each test to (pN)(nt) = 16.

DISCUSSION OF RESULTS

• Effect	of	Increasing	Threads/Processes: GFLOP/s tend
to increase with number of processes (left to right in Table
1). This result makes sense given how the HPCG benchmark
sets up the test problem. Each process is assigned a sub-
block so the global grid expands as processes are added.
The result is a greater number of calculations. By contrast,
threads are only used to distribute calculations within
existing sub-blocks, and although this increases the speed at
which calculations are done, it does not increase the volume
of the domain.

171 | JA
C

K
 S

L
E

T
T

E
B

A
K

• Comparing	Process	Configurations: When we compare
sub-tables a and b to sub-tables c and d (alternating
vs. socketfill), we see that throughput is much more
strongly influenced by process assignment than by thread
configuration. The alternating process distribution produces
significantly better maximum throughputs than the socketfill
algorithm.

 � Comparing like rows in these sub-tables, we see a much more
gradual increase in performance in the socketfill algorithm
as pN increases, although performance evens out when
pN = 16. This result may be connected to how L3 cache is
shared on a socket. As the number of processes goes up,
the amount of cache available to each process goes down.
As a result, a socketfill scheme has much less cache than
an alternating scheme does, so the benchmark experiences
more cache misses and lower throughput. When the
process count reaches the number of cores on a node, the
allocation scheme is irrelevant because the sockets received
the same number of cores, so the reported throughput
remains constant.

• Comparing	 Thread	 Configurations: When we compare
sub-tables a and c to sub-tables b and d (one-core vs.
compact), we see that compact assignment can yield better
results. Exceptions to this are found at higher process counts
and lower thread counts, where the difference in thread
configuration is less drastic. The improvement associated
with compact assignment is more pronounced at a thread
count of 16. This is because with compact assignment,
each thread is guaranteed its own core on which to perform
calculations. With a scheme that places all threads on a single
core, however, there are more software threads but there is
no increase in the amount of hardware used. As a result,
threads are executed sequentially or the operating system
performs several context switches among queued threads.

U
M

B
C

 R
E

V
IE

W

V
O

L
. 1

7

|
 1

72 An alternating process scheme with compact thread assignment
produces the highest throughput (392.80 GFLOP/s) and should
therefore be used when running the benchmark.

RESULTS WITH TAG MATCHING INTERFACE

We also optimize the inter-node environment by modifying the
communication environment used by MPI. In our intra-node tests,
we set the network to use a shared memory fabric with OFED (Open
Fabrics Enterprise Distribution) verbs for MPI. Using Tag Matching
Interface (TMI) for MPI communications substantially improved
scaling and performance on nodes. These results are recorded in
Table 2 and can be directly compared to the results in Table 1b.

COMPARING MPI ENVIRONMENT CONFIGURATIONS

With 64 nodes, 16 processes per node, and one thread per process,
the throughput with TMI was over eight times the throughput
without TMI. This improvement dwarfs the differences between each
intra-node setup. There were also noticeable improvements at lower
numbers of nodes and processes.

MAXIMUM THROUGHPUT

After optimizing both the intra-node and inter-node levels, we can see
that maya is capable of reaching nearly 450 GFLOP/s (with 64 nodes,
16 processes per node, and 1 thread per process) on 1,024 total cores.
This result is 84% greater than the result of 240 GFLOP/s recorded
in previous tests.3 Our changes were made without optimizing the
underlying algorithm. The performance of maya is very consistent
with results reported in the June 2015 edition of the HPCG
benchmark:6 The supercomputer Bifrost at Linköping University
in Sweden reports 4,500 GFLOP/s with 10,256 cores and slightly
better hardware. It makes sense that Bifrost achieved approximately
ten times the throughput of our tests because it used approximately
ten times as many cores. Our results were obtained using less than a
fourth of the total hardware on maya, indicating the possibility of
achieving much higher throughputs. If an optimized benchmark were
expanded to run on all of maya, we would expect a throughput far
greater than 450 GFLOP/s.

173 | JA
C

K
 S

L
E

T
T

E
B

A
K

Alternating Process, Compact Thread with TMI MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 15.95 46.72 63.69 96.50 111.11

32 nodes 37.92 75.30 125.60 194.36 222.63

64 nodes 62.12 145.92 244.28 377.71 442.83

CONCLUSIONS AND REFLECTIONS

This work addresses an ongoing need for benchmarking on cutting-
edge supercomputers such as maya. These benchmarks provide
both a standard for comprehensive testing and a way to explore the
computational limits of hardware. The main goal of this paper was
to identify how to reach these limits with modifications that can be
performed on any supercomputer. This paper also shed light on
the internal workings of maya with the hope that the optimizations
that were uncovered could be used in other areas of computational
research that are performed on maya.

Moving forward there is more to be done. There are several
reports that refer to certain strategies for optimizing software
to run on the Intel Xeon PhiTM, and these changes can be made to
the sections of HPCG that are able to be modified.1,2,8 These same
functions can also be made to take advantage of GPU acceleration,
which would allow a meaningful comparison of performance on the
HPCG benchmark between the Intel Xeon Phi and NVIDIA GPUs.
It would also be useful to rebuild an open-source version of the Intel
Optimized High Performance Conjugate Gradient Benchmark to
allow further revisions to existing code. With all of these elements, a
truly comprehensive comparison could be drawn among all relevant
computing architectures currently available on the maya system.

TABLE 2. Observed GFLOP/s for local sub-block dimensions nx × ny × nz = 160
× 160 × 160 using an alternating process configuration and a compact
thread configuration. The variable pN represents the number of MPI
processes per node and nt represents the number of threads per MPI
process.

U
M

B
C

 R
E

V
IE

W

V
O

L
. 1

7

|
 1

74 ACKNOWLEDGMENTS

This work was sponsored by an Undergraduate Research Award
from the Office of Undergraduate Education. The author was also
supported by the Meyerhoff Scholars Program through a contract
with the National Security Agency (NSA). The work began during the
REU Site: Interdisciplinary Program in High Performance Computing
in the Department of Mathematics and Statistics at the University of
Maryland, Baltimore County (UMBC) in summer 2014. This REU
Site program was funded jointly by the National Science Foundation
and the National Security Agency (NSF grant no. DMS-1156976) with
additional support from UMBC, the Department of Mathematics and
Statistics, the Center for Interdisciplinary Research and Consulting
(CIRC), and the UMBC High Performance Computing Facility
(HPCF). HPCF is supported by the U.S. National Science Foundation
through the MRI program (grant nos. CNS-0821258 and CNS-
1228778) and the SCREMS program (grant no. DMS-0821311) with
additional substantial support from UMBC.

175 | JA
C

K
 S

L
E

T
T

E
B

A
K

REFERENCES

1. Intel Corporation. Intel Optimized Technology Intel Optimized High Performance
Conjugate Gradient Benchark, 2014. https://software.intel.com/en-us/articles/
intel-optimized-technology-preview-for-high-performance-conjugate-gradient-
benchmark, accessed on January 14, 2016.

2. Intel Corporation. Intel Optimized Technology Preview for High Performance
Conjugate Gradient Benchmark, 2014. https://software.intel.com/sites/default/
files/managed/1f/e8/HPCG_KB_Article-v23.pdf, accessed on January 14, 2016.

3. Adam Cunningham, Gerald Payton, Jack Slettebak, Jordi Wolfson-Pou, Jonathan Graf,
Xuan Huang, Samuel Khuvis, Matthias K. Gobbert, Thomas Salter, and David
J. Mountain. Pushing the Limits of the Maya Cluster. Technical Report HPCF–
2014–14, UMBC High Performance Computing Facility, University of Maryland,
Baltimore County, 2014.

4. Jack Dongarra and Michael A. Heroux. Toward a new metric for ranking high
performance computing systems. Technical Report SAND2013–4744, Sandia
National Laboratories, June 2013. https://software.sandia.gov/hpcg/doc/HPCG-
Benchmark.pdf, accessed on January 14, 2016.

5. Michael A. Heroux, Jack Dongarra, and Piotr Luszczek. HPCG technical specification.
Technical Report SAND2013–8752, Sandia National Laboratories, October 2013.
https: //software.sandia.gov/hpcg/doc/HPCG-Specification.pdf, accessed on
January 14, 2016.

6. HPCG. June 2015 hpcg results, 2015. http://www.hpcg-benchmark.org/custom/
index.html?lid=155&slid=279, accessed on January 14, 2016.

7. Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1997.

8. Jongsoo Park, Mikhail Smelyanskiy, Karthikeyan Vaidyanathan, Alexander Heinecke,
Dhiraj Kalamkar, Xing Lui, Md. Mosotofa Ali Patwary, Yutong Lu, and Pradeep
Dubey. Efficient shared-memory implementation of high-performance conjugate
gradient benchmark and its application to unstructured matrices. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, 2014.

9. Jack Slettebak. The HPCG Benchmark for Cluster Computing. Senior Thesis, Department
of Mathematics and Statistics, University of Maryland, Baltimore County, 2015.

