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PUSHING THE LIMITS OF THE  
MAYA SUPERCOMPUTER WITH  
THE HPCG BENCHMARK

In summer 2014, I was fortunate enough to be selected to participate in 
a Research Experience for Undergraduates (REU) hosted here at UMBC. 
The REU focused primarily on high-performance computing and how 
parallel algorithms can be applied to various computational problems. All of 
the participants were assigned to teams and given an accelerated course 
on parallel algorithms. We were then exposed to several ongoing research 
projects that applied the techniques we learned. My group decided to pursue 
a topic under Dr. Thomas Salter of the Advanced Computing Systems 
Research Program. This involved performing a set of taxing software tests, 
called benchmarks, on maya, one of the two supercomputers at UMBC. 
By doing this, we gained valuable information on how the supercomputer 
functions. This knowledge can be applied to future research projects 
both within and outside the Department of Mathematics and Statistics. 
We decided to use the High Performance Conjugate Gradient (HPCG) 
benchmark because it is a well-known, respected benchmark that has 
its results published. The following paper provides the results of multiple 
experiments and explains what these results mean in the context of a 
parallel computing environment.

[LEFT]  IRC, 2013. Photograph by UMBC Creative Services.

[RIGHT]  Computer scientists programming punch cards, 1970s, University Archives, 
Special Collections, University of Maryland, Baltimore County (UMBC).
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ABSTRACT

Parallel architectures and algorithms sit at the forefront of  high-
performance computing as ways to decrease the execution time of  
a computationally intense problem. Parallel architecture is hardware 
that has multiple cores or multiple threads, and a parallel algorithm 
is a software algorithm designed to be able to use multiple cores or 
threads simultaneously. The supercomputer maya in the UMBC High 
Performance Computing Facility (HPCF) is designed to provide 
a resource for the researchers of  various disciplines who require a 
powerful parallel computer to solve the problems they encounter in 
their work. Using the newly developed High Performance Conjugate 
Gradient (HPCG) benchmark (www.hpcg-benchmark.org) from 
Sandia National Laboratories, this effort identified several runtime 
optimizations that allow for maximum performance on maya. 
These optimizations nearly doubled the reported performance 
of  the benchmark from previous tests. A total throughput of  450 
GFLOP/s was achieved using only a fourth of  the hardware  
available on maya.

INTRODUCTION

The supercomputer maya is supported by the High Performance 
Computing Facility (HPCF) at the University of  Maryland, Baltimore 
County (UMBC). It has more than 300 nodes equipped with powerful 
multi-core CPUs and several other cutting-edge technologies. 
Challenges include creating an environment that yields maximum 
performance and even knowing what level of  performance should be 
expected. To address these challenges, a benchmark may be used to 
identify and measure an optimal runtime setup for use in other research 
applications. A benchmark is a portable program that runs a specified 
task on a system and returns a meaningful metric of  the system’s 
performance. A useful measure of  performance for supercomputers 
is the number of  FLoating-point OPerations per second (abbreviated 
as “FLOP/s”). Because supercomputers are capable of  billions of  
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operations per second, our results are reported in GFLOP/s (spoken 
as “GigaFLOPs”). One GFLOP/s is equal to exactly 1,000,000,000 
FLOP/s.

The High Performance Conjugate Gradient (HPCG) benchmark 
(www.hpcg-benchmark.org) from Sandia National Laboratories 
was used to test maya. This benchmark was recently developed 
to complement the more than 35-year-old High Performance 
LINPACK (HPL) benchmark. Both benchmarks solve large systems 
of  linear equations. HPL solves a dense system of  equations, while 
HPCG solves a sparse system of  equations. Appropriately, the HPL 
benchmark uses a direct solver, while the HPCG benchmark uses 
a pre-conditioned iterative solver. HPCG reports computational 
throughput as a measure of  performance. HPCG benchmark results 
have been reported for many of  the top supercomputers in the world 
and are therefore appropriate for establishing comparisons to maya.

Past tests showed that increasing the number of  threads led 
to an increase in computational throughput.3 A greater increase 
in throughput was observed when the number of  processes was 
increased. Total throughput decreased, however, when the sum of  
the number of  processes on each node and the number of  threads on 
each node exceeded 16. This was because although we were spawning 
more processes, we had no available hardware to execute them.  
In light of  this observation, future trials kept the number of  cores 
assigned to each job equal to the sum of  the number of  processes and 
the number of  threads.

It was also found that an increase in throughput could be 
achieved by increasing the problem size.3 As the problem size 
increased, so did the density of  calculations, which resulted in higher 
throughput and less time spent fetching memory.

HARDWARE SPECIFICATION

This report focuses on the 72 newest nodes in maya, 69 of  which are 
compute nodes. Each of  these compute nodes has two eight-core  
2.6-GHz Intel® E5-2650v2 Ivy Bridge CPUs. Figure 1 shows a 
schematic of  one of  the compute nodes. Each core has dedicated 
32 kB of  L1 cache and 256 kB of  L2 cache; 20 MB of  L3 cache 
is shared among the eight cores of  each CPU. The 64 GB of  each 
node’s memory is formed by eight 8-GB DIMMs, and each CPU is 
connected to four DIMMs. Two QuickPath Interconnect (QPI) links 
connect the two CPUs of  each node, and the nodes are connected to 
each other through a Quad data rate (QDR) InfiniBand interconnect.
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SOFTWARE

The HPCG benchmark is capable of  integrating several different 
libraries and data structures. The options available thanks to this 
capability have a large impact on the execution of  the benchmark 
and consequently its total computational throughput. In our tests, 
we made use of  Message Passing Interface (MPI)7 for process-level 
parallelism and OpenMP® for thread-level parallelism. We ran the 
benchmark with varying numbers of  threads and processes.

In the context of  this paper, a process is a task that requires 
computation time on a CPU and that is represented by a Process 
Control Block (PCB) and an independent memory space for 
associated data. The PCB holds all of  the state variables of  the 
process. The memory needed to maintain these features can reduce 
throughput by increasing the number of  cache misses and the amount 
of  input/output between the CPU and main memory. Also, because 
each process has its own memory space, each process must use MPI 
to communicate essential data.7 While communicating with main 
memory or sending and receiving messages through MPI, a process is 
idling, which decreases total throughout.

FIGURE 1.  Illustration of compute node architecture with dual sockets, showing the 
physical cores within each socket, on-chip cache, and memory channels.



167   |   JA
C

K
 S

L
E

T
T

E
B

A
K

 

Threads can be thought of  as stripped-down processes. Like 
processes, threads require computation time from the CPU, but 
they lack several features of  a process. Specifically, a thread has no 
PCB or independent memory space; instead, it shares the memory 
of  its parent process with any other threads that may exist within it.  
Because of  this, threads waste less memory than processes do, and  
an explicit interface is not needed to pass data between threads  
within a process. As a result, the computational efficiency of  a thread 
is greater than that of  a process.

The HPCG benchmark measures throughput in units 
of  GFLOP/s (Giga FLoating-point OPerations per second). A 
floating-point operation is any arithmetic operation between stored 
numbers. An increase in GFLOP/s corresponds to an increase  
in performance.

The HPCG benchmark is a program that uses a conjugate 
gradient solver on a 3-D chimney domain. It was written in portable 
C++ code and was designed to be able to run on any number of  
processors. HPCG allows the user to specify sub-block sizes on each 
processor and then generates a 27-point finite difference matrix.4

The problem generated by this benchmark is essentially a 
single-degree stationary heat diffusion model with Dirichlet boundary 
values of  zero. Its global domain dimensions are Nx × Ny × Nz where 
Nx = nxpx, Ny = nypy, and Nz = nzpz. The numbers nx, ny, and nz are 
the sub-block dimensions in the x-, y-, and z-dimensions, respectively. 
The benchmark uses a total number of  MPI processes pN, which is 
factored into three dimensions px × py × pz. Each MPI process is then 
assigned a sub-block.

In the setup phase, a sparse linear system is created by 
constructing a 27-point stencil at each grid point in the 3-D domain.5 
The three-dimensional stencil at an interior mesh point is sketched in 
Figure 2. The equation at a given point relies on the values at its specific 
location as well as the values at the other 26 points. The setup is weakly 
diagonally dominant for the interior points on the domain, while the 
setup for the boundary points is strongly diagonally dominant. The 
setup for this matrix implements the synthetic conservation principle 
for the interior points and illustrates the impact on the boundary 
equations of  having Dirichlet boundary values of  zero.

The properties of  the linear system include all initial guesses 
that contain at least one value of  0, a matching right-hand-side 
vector, and a solution vector that equals 1. The system matrix is a 
non-singular, positive-definite matrix. It has 27 nonzero entries per 
equation for interior points and 7 to 18 nonzero entries per equation 
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for the boundary points. Each mesh point has internal symmetry, as 
shown in Figure 2. The values at the mesh points that neighbor an 
interior point are symmetric, as shown by the numbers in Figure 2. 
These nonzero values form 27 bands of  nonzero entries in the system 
matrix of  the discretized equation.

RESULTS INVOLVING DIFFERENT RUNTIME SETUPS

A previous technical report3 includes several useful insights 
regarding the internal algorithm and problem setup in the HPCG 
benchmark. Most importantly, it was found that larger sub-block 
sizes (nx × ny × nz) resulted in greater throughputs than smaller 
sub-block sizes. This is because each larger sub-block created more 
unknowns in its system of  equations, so the ratio of  computation to 
communication was higher for each sub-block. The sub-block size 
was set to have the maximum dimensions that would fit within the  
64 GB of  available memory. These dimensions were calculated to be 
nx × ny × nz = 160 × 160 × 160.

FIGURE 2.  Diagram of the 27-point stencil created at each point in the mesh. Only 
the interior mesh points have the symmetry shown here.
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Using these results3 and results from a senior thesis9 as a 
foundation, we sought to optimize the runtime environment at both 
the intra-node and inter-node levels. This involved trying different 
ways of  assigning threads to cores and processes to CPUs at runtime. 
It also involved optimizing the environment variables within the 
operating system to achieve maximum throughput.

(a) Alternating Process, One-Core Thread with OFA MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 12.79 49.71 68.82 99.89 121.38

32 nodes 35.18 58.83 114.14 195.03 207.40

64 nodes 42.44 125.74 225.44 392.35 ET

(b) Alternating Process, Compact Thread with OFA MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 18.07 48.25 66.72 99.67 121.56

32 nodes 35.05 60.62 116.34 194.64 196.66

64 nodes 55.56 122.16 232.43 392.80 52.59

(c) Socketfill Process, One-Core Thread with OFA MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 16.24 35.55 48.04 60.82 121.97

32 nodes 39.91 58.63 93.81 121.68 224.62

64 nodes 65.51 116.57 186.22 242.40 51.28

(d) Socketfill Process, Compact Thread with OFA MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 16.22 35.47 47.96 61.91 120.53

32 nodes 40.09 58.67 92.61 122.36 180.42

64 nodes 65.98 116.16 186.33 243.51 47.14

TABLE 1.  Observed GFLOP/s for local sub-block dimensions nx × ny × nz = 160 
× 160 × 160 using combinations of alternating and socketfill process 
configurations and compact and one-core thread configurations.  
The variable pN represents the number of MPI processes per node  
and nt represents the number of threads per MPI process. The notation  
ET indicates that the case took excessive time and was not run  
to completion.
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Table 1 reports the intra-node results and holds constant the flags 
and environment variables that would affect MPI and other inter-
node communications. Modifications were made to the job scheduler 
known as Slurm (Simple Linux Utility for Resource Management), 
which is used to allocate system resources within maya, and to 
OpenMP environment variables, which control the number of  
threads spawned during execution. These configurations allowed 
us to explore several different allocation schemes for processes  
and threads:

a.  Alternating	Process,	One-Core	Thread: alternates 
sockets when placing MPI processes and places all threads 
onto a single core.

b.  Alternating	Process,	Compact	Thread: alternates sockets 
when placing MPI processes and distributes threads to the 
closest vacant cores.

c.  Socketfill	Process,	One-Core	Thread: fills one socket 
before adding processes to the other socket and places all 
threads onto a single core.

d.  Socketfill	Process,	Compact	Thread: fills one socket 
before adding processes to the other socket and distributes 
threads to the closest vacant cores.

Because hyperthreading is disabled, we are forced to use only the 
physical cores within each socket. This means that each node on 
maya is capable of  running up to 16 processes in parallel. Therefore, 
to maximize parallelization and avoid context switches, we fix the 
product of  the number of  threads (nt ) and the number of  processes 
(pN) assigned to each test to (pN)(nt ) = 16.

DISCUSSION OF RESULTS

•  Effect	of	Increasing	Threads/Processes: GFLOP/s tend 
to increase with number of  processes (left to right in Table 
1). This result makes sense given how the HPCG benchmark 
sets up the test problem. Each process is assigned a sub-
block so the global grid expands as processes are added. 
The result is a greater number of  calculations. By contrast, 
threads are only used to distribute calculations within 
existing sub-blocks, and although this increases the speed at 
which calculations are done, it does not increase the volume 
of  the domain.
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•  Comparing	Process	Configurations: When we compare 
sub-tables a and b to sub-tables c and d (alternating 
vs. socketfill), we see that throughput is much more 
strongly influenced by process assignment than by thread 
configuration. The alternating process distribution produces 
significantly better maximum throughputs than the socketfill 
algorithm. 

 �  Comparing like rows in these sub-tables, we see a much more 
gradual increase in performance in the socketfill algorithm 
as pN increases, although performance evens out when  
pN = 16. This result may be connected to how L3 cache is 
shared on a socket. As the number of  processes goes up, 
the amount of  cache available to each process goes down. 
As a result, a socketfill scheme has much less cache than 
an alternating scheme does, so the benchmark experiences 
more cache misses and lower throughput. When the 
process count reaches the number of  cores on a node, the  
allocation scheme is irrelevant because the sockets received 
the same number of  cores, so the reported throughput 
remains constant.

•  Comparing	 Thread	 Configurations: When we compare 
sub-tables a and c to sub-tables b and d (one-core vs. 
compact), we see that compact assignment can yield better 
results. Exceptions to this are found at higher process counts 
and lower thread counts, where the difference in thread 
configuration is less drastic. The improvement associated 
with compact assignment is more pronounced at a thread 
count of  16. This is because with compact assignment, 
each thread is guaranteed its own core on which to perform 
calculations. With a scheme that places all threads on a single 
core, however, there are more software threads but there is 
no increase in the amount of  hardware used. As a result, 
threads are executed sequentially or the operating system 
performs several context switches among queued threads.



U
M

B
C

 R
E

V
IE

W
   

V
O

L
. 1

7
   

|   
 1

72 An alternating process scheme with compact thread assignment 
produces the highest throughput (392.80 GFLOP/s) and should 
therefore be used when running the benchmark.

RESULTS WITH TAG MATCHING INTERFACE

We also optimize the inter-node environment by modifying the 
communication environment used by MPI. In our intra-node tests, 
we set the network to use a shared memory fabric with OFED (Open 
Fabrics Enterprise Distribution) verbs for MPI. Using Tag Matching 
Interface (TMI) for MPI communications substantially improved 
scaling and performance on nodes. These results are recorded in 
Table 2 and can be directly compared to the results in Table 1b.

COMPARING MPI ENVIRONMENT CONFIGURATIONS

With 64 nodes, 16 processes per node, and one thread per process, 
the throughput with TMI was over eight times the throughput 
without TMI. This improvement dwarfs the differences between each 
intra-node setup. There were also noticeable improvements at lower 
numbers of  nodes and processes.

MAXIMUM THROUGHPUT

After optimizing both the intra-node and inter-node levels, we can see 
that maya is capable of  reaching nearly 450 GFLOP/s (with 64 nodes, 
16 processes per node, and 1 thread per process) on 1,024 total cores. 
This result is 84% greater than the result of  240 GFLOP/s recorded 
in previous tests.3 Our changes were made without optimizing the 
underlying algorithm. The performance of  maya is very consistent 
with results reported in the June 2015 edition of  the HPCG 
benchmark:6 The supercomputer Bifrost at Linköping University 
in Sweden reports 4,500 GFLOP/s with 10,256 cores and slightly 
better hardware. It makes sense that Bifrost achieved approximately 
ten times the throughput of  our tests because it used approximately 
ten times as many cores. Our results were obtained using less than a 
fourth of  the total hardware on maya, indicating the possibility of  
achieving much higher throughputs. If  an optimized benchmark were 
expanded to run on all of  maya, we would expect a throughput far 
greater than 450 GFLOP/s.
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Alternating Process, Compact Thread with TMI MPI

pN = 1 pN = 2 pN = 4 pN = 8 pN = 16

nt = 16 nt = 8 nt = 4 nt = 2 nt = 1

16 nodes 15.95 46.72 63.69 96.50 111.11

32 nodes 37.92 75.30 125.60 194.36 222.63

64 nodes 62.12 145.92 244.28 377.71 442.83

CONCLUSIONS AND REFLECTIONS

This work addresses an ongoing need for benchmarking on cutting-
edge supercomputers such as maya. These benchmarks provide 
both a standard for comprehensive testing and a way to explore the 
computational limits of  hardware. The main goal of  this paper was 
to identify how to reach these limits with modifications that can be 
performed on any supercomputer. This paper also shed light on 
the internal workings of  maya with the hope that the optimizations 
that were uncovered could be used in other areas of  computational 
research that are performed on maya.

Moving forward there is more to be done. There are several 
reports that refer to certain strategies for optimizing software  
to run on the Intel Xeon PhiTM, and these changes can be made to 
the sections of  HPCG that are able to be modified.1,2,8 These same 
functions can also be made to take advantage of  GPU acceleration, 
which would allow a meaningful comparison of  performance on the 
HPCG benchmark between the Intel Xeon Phi and NVIDIA GPUs. 
It would also be useful to rebuild an open-source version of  the Intel 
Optimized High Performance Conjugate Gradient Benchmark to 
allow further revisions to existing code. With all of  these elements, a 
truly comprehensive comparison could be drawn among all relevant 
computing architectures currently available on the maya system.

TABLE 2.  Observed GFLOP/s for local sub-block dimensions nx × ny × nz = 160 
× 160 × 160 using an alternating process configuration and a compact 
thread configuration. The variable pN represents the number of MPI 
processes per node and nt represents the number of threads per MPI 
process.
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