PROBING THE DIMERIZATION OF THE HIV-1 5′ LEADER

Carly A. Sciandra, Heather Frank, Justin Santos, Sayo McCowin, Verna Van, Sarah C. Keane, and Michael F. Summers

Department of Chemistry & Biochemistry, Howard Hughes Medical Institute, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21052

Abstract

Human immunodeficiency virus type-1 (HIV-1) infects roughly 35 million people worldwide. HIV-1 selectively packages the dimeric, unspliced RNA genome. It is important to characterize the dimerization mechanism of the HIV-1 5′-leader (5′-L) because it is the most conserved region of the genome and contains the major dimerization signal. Previous NMR studies from our lab have identified an extensive intramolecular dimer interface of the 5′-L after long periods of incubation in physiological conditions. Gel based studies of the 5′-L established the dimerization equilibrium to be approximately 30 minutes. However, the nature of the dimer is unknown. We used an NMR spectroscopy strategy known as long-range probing by Adenosine Interaction Detection (lr-AID) to probe the nature of the dimer interface at short time intervals. The two lr-AID mutations, UUA vs. UUG, when introduced into the context of the full 5′-L, have distinct chemical shifts at 6.4 ppm and 6.7 ppm, respectively. By mixing A1 UUA 5′-L and A0 UUG 5′-L, we were able to show that the 5′-L forms an extended dimer within 30 minutes, consistent with the gel-based studies. Therefore, extended dimer formation occurs on the same time scale as overall dimerization.

The Retroviral Life Cycle

The HIV-1 life cycle can be understood through two distinct stages: early and late phase. The early phase is characterized by viral infection of the host cell, reverse transcription of the viral genome, and integration in to the host DNA. The late phase is characterized by translation of the newly integrated genome, selection and packaging, virus assembly, and maturation.

The HIV-1 Genome

“Kissing” Dimer → Extended Dimer Equilibrium

HIV-1 genome selection is highly selective and only dimeric, unspliced genomes are recognized by Gag for packaging. The nature of dimer formation between viral RNA occurs in two proposed forms: a palindromic “kissing” interaction and an extended dimer conformation.

Figure 1. Life Cycle of HIV

Figure 2. The 5′-untranslated region (5′-UTR) is located at the 5′ distal end of the HIV-1 genome.

Long Range Probing by Adenosine Interaction Detection: (lr-AID)

Figure 4. We are utilizing a sequence (UUA:UAA) found natively in the TAR stem loop of the 5′-L which exhibits a unique chemical shift in an isolated region of the NMR spectra in order to view the different conformations. Previous studies show that when this sequence is introduced into the U5:AUG region of the 5′-L as a mutation, a similar peak is obtained.

Dimerization of HIV-1’s 5′-L as a Function of Time by NMR

Dimerization of HIV-1′s 5′-L as a Function of Time by Gel Electrophoresis

Figure 5. In order to monitor dimerization by NMR it is necessary to differentiate between the 5′ leaders involved. Our control hairpins indicated that the 5′-UTR (above; 6a) and (UUG:UAA) sequences appeared at 6.4 and 6.7 ppm, respectively. We will introduce these lr-AID mutations in the U5:AUG region of the full 5′-L to probe for kissing vs. extended conformations as a function of time.

Conclusion/ Future Work

Through this NMR study and time-dependence gel studies, we were able to establish that the extended dimer of the 5′-L forms within 30 minutes. Our next step is to characterize the differences in RNA binding between the GAG polyprotein, capsid-nucelocapsid (CANC), and nucleocapsid (NC).

Acknowledgements

This research was funded by NIH/NIGMS grant 1P50GM103297 and was conducted at the Howard Hughes Medical Institute at UMB. Supported in part by the Howard Hughes Medical Institute's Precollege and Undergraduate Science Education Program.

References