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INCREASING THE SPEED OF  
QUANTUM LOGIC GATES IN SPIN QUBITS 
WITH INDUCTORS

I began my research at the end of my freshman year. When my mentor first 
proposed a possible project, he was hesitant to point me in that direction 
because of its difficulty. Nevertheless, I eagerly accepted the challenge and 
spent several months stumbling on background information in quantum 
computing. This field attempts to use the quantum states of particles to 
process information. Physicists have engineered favorable quantum bits in 
semiconductors, but no quantum system has been able to outperform a 
classical computer. Experimentalists are interested in new ways to entangle 
quantum bits and we investigate alternative coupling methods for spin 
qubits that decrease their operation time. This project has expanded my 
interest in quantum mechanics and has taught me to think like a physicist by 
challenging my intuition and developing my ability to ask the right questions.

[LEFT]  Physics Building, 2012. Photograph by Marlayna Demond, '11. 

[RIGHT]  Physics department, 1977, University Archives, Special Collections, University of 
Maryland, Baltimore County (UMBC).
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INTRODUCTION

Universal computing can be dated to 1903 when Alan Turing’s 
theoretical model of  the Turing machine led a large-scale innovative 
revolution towards digital computing machines.1 The next milestone 
is to process and control information at its fundamental level — 
quantum states of  particles. Richard Feynman first pointed out that as 
certain types of  computational problems get more complex, classical 
bits fail to give efficient answers.2 For example, when simulating 
quantum mechanics, the amount of  memory needed to describe a 
quantum system increases exponentially with the number of  its 
components. A new device — a quantum computer — is therefore 
highly sought after by physicists.3

A quantum computer relies on the precise manipulation of  
quantum bits (qubits) to perform a two-qubit operation and hence 
generate an entangled state. Recent advances in solid-state physics 
have provided promising qubits by trapping electrons in artificial 
semiconductor quantum dots (Figure 1A).4,5 For example, electrons 
trapped in a two-dimensional electron gas of  GaAs-AlGaAs 
heterostructures can be encoded into singlet and triplet states and 
the two double quantum dots (DQDs) can entangle electrostatically 
(Figure 1B). While this system has reported coherence times of  200 
ns, inter-qubit operations remain challenging because their non-local 
interactions are weak.6

SINGLET-TRIPLET QUBITS COUPLED TO RESONATOR  
VIA INDUCTOR

We propose a new quantum computing system that applies 
superconducting techniques to spin qubits. In theory, the entanglement 
of  two capacitively coupled singlet-triplet qubits, which are particularly 
promising spin qubits, can be amplified with additional coupling 
through an inductive circuit element similar to the resonators used with 
superconducting qubits. Stronger coupling through the resonator yields 
faster operation times and hence a more viable quantum computer in  
a noisy spin environment.
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Previous theoretical models have proposed floating capacitive 
metallic gates that mediate the electrostatic interaction between the 
qubits.7 Specifically, a pair of  conducting discs connected by a wire 
placed near the DQDs allows the information of  the qubits’ states to 
propagate through the metal wire. The same idea is applicable to a coupler 
with a built-in inductor. The geometry of  the metallic gate determines 
how the singlet-triplet qubits electrostatically interact with the coupler.  
To make the calculation manageable, we consider an inductive 
coupling element with conducting spheres attached to the ends 
(Figure 2). Because the electrons' probability densities are roughly 
Gaussian around the dot centers, they can be approximated as point 
charges. The number of  electrons in the inner dots depends on the 
probability of  the outer electrons tunneling inward when tilted with 
bias energy ϵ1,2 (Figure 1B). The charge configurations for the dots in 
Figure 2 are given by 

FIGURE 1. �(A) Artificial double quantum dots confine electrons using 
lithographically etched nanowires. (B) Four electrons in two double 
quantum dots (DQDs). The spins of the two electrons in a DQD can  
form a singlet state ∣S〉 or triplet state ∣T 〉. The Coulomb repulsion of 
each qubit (left and right DQD) provides non-local entangling terms in  
the Hamiltonian.

FIGURE 2. �Method of images setup for induced charge on the end of the coupling 
element. Spheres were used to easily approximate the induced charge.
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where θ(t ) is time-dependent when the dot is tilted sinusoidally 
because we choose ϵ(t ) = A sin ωt + B (Appendix A). The 
voltage between the spheres is found by the method of  images. 
For each charge, the boundary conditions for Laplace’s equation 
can be satisfied by placing an image charge of  magnitude  
          at a distance       (Figure 2). Because the resonator  
is not grounded, each sphere has a floating potential V0 . Therefore 
a third image charge, q'''(t ), is placed at the center with magnitude 
4ϵR 0V0 . The potentials at nodes A and B are written as

where q(t ) is the total induced charge on the sphere and, due to 
conservation of  charge, is the opposite of  the total induced charge 
on the other sphere (qsphere1(t ) + qsphere2(t ) = 0). The system is set up 
symmetrically with respect to the two qubits (d1=d2 ), but each 
qubit is asymmetric (d' ≠ d'' ). This way, the oscillating charge in 
the DQD induces an oscillating potential difference between the 
spheres. Depending on how the coupling element is engineered, 
it can be modeled as a parallel or series LC circuit coupled by 
a capacitor Ceff  to a driving component F(t ). The qubits supply 
the driving potential F(t ) ~ (VA   VB ) to the spheres. The total 
effective capacitance of  the spherical ends of  the resonator is  
Ceff = 2ϵ0R0  ≈ 1.87 aF and the AC driving potential F(t ) = (qa'(t )  
qb'(t ))/(4ϵ0R0 ).

If  the coupler is modeled as a series LC circuit, the effective 
capacitance of  the spheres and the inherent capacitance of  the coupler 
are added in series (Figure 3). The inherent capacitance of  the coupler, 
C2 , can be modeled as a straight wire of  radius 10 nm and length 1 µm. 
Because the capacitors are in series and C2 ~ f F >> Ceff , the inherent 
capacitance can be neglected (simplified circuit diagram in Figure 3). 

q±a

R0

d'q'     =1/2 d'b = R0
2

φa
|e|φa + sin2 θ(t ) φ-a|e|φ-aqa, 1 (t ) = (1.1)

φ-a|e|φ-a  sin2 θ(t ) φ-a|e|φ-aq-a, 1 (t ) = (1.2)

φ-a|e|φ-a + sin2 θ(t ) φa
|e|φaq-a, 2 (t ) = (1.3)

φa
|e|φa  sin2 θ(t ) φa

|e|φaqa, 2 (t ) = (1.4)

VB   = 4ϵ0R0

q'''(t )2 = -q(t )  q' (t )  q2''(t )2
4ϵ0R0

(2.2)

4ϵ0R0

q'''(t )1 =
q(t )  q' (t )  q1''(t )1

4ϵ0R0

VA   = (2.1)
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Using Kirchhoff ’s voltage law, we set the potential difference between 
the spheres equal to the potential drop across the middle components 
of  the coupler and ignore resistance: VA - B = VL + VC2

 ≈ VL.

where           . Appendix B gives A' and B' along with the  
solution for q(t ). If  the coupling element is modeled as a parallel LC 
circuit (Figure 4), all of  the drops in potential across branches are 
equal: VA - B = VL = VC2

. Because of  charge conservation, the three 
differential equations can be expressed as

(3.1)F(t ) 
q(t )
Ceff

  L q(t ) = 0¨

q(t ) + ω2q(t ) = A' sin ωt + B'¨ 0 (3.2)

ω0 = 1/√LC

FIGURE 3. �Circuit diagram of singlet-triplet qubits coupled to a series LC circuit. 
The capacitive coupling does not represent a physical capacitor — it 
is the Coulomb interaction of the two qubits. The qubits interact with 
the resonator through the effective capacitance of the spheres. The 
interaction can be simplified to the driven LC circuit on the right.

FIGURE 4. �Circuit diagram of singlet-triplet qubits coupled to a parallel LC circuit.
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(4.3)q1(t ) = q2(t ) + q3(t )· · ·
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0 where q1(t ) is the charge on each sphere with effective capacitance Ceff , 
q2(t ) is the charge on the capacitor C2, and q3(t ) is the current through 
each signal strip with inductance L. The resonant frequency of  the 
system is                                   (Appendix B). 

Because the driving term is proportional to the charge difference 
between the spheres, the composite state where both qubits are in 
the singlet state, |SS, drives with F(t ) = 0. |TT  is also static with 
sinusoidal tilting. Only the |ST  and |TS states drive voltage across the  
coupler. The Hamiltonians of  the series and parallel LC circuits are

where q(t ) is the solution to Equation 3.2 and q1(t ), q2(t ), and q3(t )  
are all solutions to Equations 4.1–4.3 when qi(t  = 0) = 0 and 
                       . The charge of  the inner dot of  a singlet-state qubit q±a(t ) 
is periodic in time, while a triplet-state qubit contains static charge. We 
omit the interaction of  the outer electrons because their charge terms 
can be absorbed into the terms of  the inner electron.

ENTANGLEMENT DYNAMICS

The operation time of  a two-qubit operation is the time it takes for the 
system to reach maximum entanglement. We quantify entanglement 
as the entropy in the system. It is calculated using the definition of  
von Neumann entropy: 

where λi is the ith eigenvalue of  the partial trace of  the density matrix  
ρ = Σ  ρi|ψi  ψi|. We numerically simulate Schrödinger’s equation under 
different conditions using Equations 5.1 and 5.2. 

We expect the peak entanglement time to be inversely 
proportional to the root mean square (RMS) of  the σz⊗ σz term in 
Equations 5.1 and 5.2. Amplifying this term should result in faster 
operation times. Because the solutions to Equation 3.2 and Equations 
4.1–4.3 have amplitudes proportional to             , the limit as ω 
approaches ω0 yields HRMS → ∞ for the (2,2) and (3,3) elements. The 
beat period, 2π/(ω0  ω), approaches infinity as ω → ω0 because these 
solutions are superpositions of  transient and steady-state components. 

qi(t  = 0 ) = 0·

S = -Σi λi log2 λi
(6)

ω0 = 1
√L(Ceff  + C2)

≈ 1
√LC2

(5.1)Hseries =  [ 1
8πϵ0

+ Lq(t )2 ](I  σZ ⊗ σZ)
q(t )q±a (t)

d' 
q(t )
d'

·

(5.2)Hparallel = [ 1
8πϵ0

+ Lq3(t )2 ](I  σZ ⊗ σZ)
q1(t )q±a,1/2 (t )

d' 
q1(t )
d'

·q2(t )
2C2

+

1/(ω2  ω2 )0
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The envelope function,                    , carries the peak of  the Hamiltonian 
towards infinity as resonance is approached. There is therefore a 
trade-off  between amplifying the RMS of  the Hamiltonian and taking 
time to ramp up the energy when driving the qubits.

FIGURE 5. �(A) The (2,2) Hamiltonian diagonal when driven within 3% away from 
resonance. For the series resonator, 0 ≈ 888.6 GHz and for the parallel 
resonator 0 ≈ 628.4 GHz. The qubits are driven with amplitude ≈ 0.25 
meV. (B) RMS of the σz⊗ σz components of the Hamiltonian. We expect 
τent to be inversely proportional to the RMS. The parallel LC circuit has 
a peak within 1% away from 0, but it is small compared to that of the 
series circuit.
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FIGURE 6. �(A) Entanglement (von Neumann entropy) of qubits coupled to a series 
LC circuit. (B) Time to reach maximum entanglement time as a function 
of frequency. The optimal frequency is 6% away from resonance due to 
ramping effects of the driven oscillator.
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We find that the dynamics of  H(t ) are very sensitive to the 
choice of  C2. Previous experimental parameters have used C2 = 
100 fF, which is much larger than our aF values of  Ceff.

8 It can be 
shown that Ceff << C2 yields a rejecting circuit, which means that it has 
minimum current when driven at resonance. Ceff >> C2 also yields a 
rejecting circuit. We find that the RMS of  the circuit, which responds 
to                     , is maximized when Ceff = C2.

A comparison of  the |ST  and |TS diagonal elements of  the 
series and parallel Hamiltonians (Equations 5.1 and 5.2) is plotted 
in Figure 5A. Each of  these two components is influenced by the 
circuit, so each resembles a driven harmonic oscillator. The series  
LC circuit experiences more amplification than the parallel circuit 
does (Figure 5B). The parallel circuit also takes longer to ramp up  
in energy, making it a less ideal coupler for the qubits. The von 
Neumann entropy is plotted for the series LC resonator in Figure 
6A. When the capacitively coupled qubits are tilted without the  
resonator, the nonlocal entanglement energy is  ≈ 3 meV, which 
corresponds to an operation time of  τent ≈ 150 ps. When the  
coupler is introduced to the system at a distance of  91 nm (roughly 
the height of  the GaAs-AlGaAs structure previously used)6  

without driving, the electrostatic interaction of  the qubits is slightly 
amplified such that the coefficient of  the σz⊗ σz component of   
Hcircuit ≈ 9 meV, so τent ≈ 130 ps. We choose spheres that have R 0 = 
aB ≈ 33.7 nm, and the interqubit distance is R  = 7.5aB. We choose 
a value for inductance that was used in previous superconducting 
experiments: L ≈ 1.05 nH.8

For the series coupler, we find that τent increases when the qubits 
are driven close enough to resonance (dark line in Figure 6B). This is 
because the ramping time of  the resonator, and hence the interaction 
of  qubits, is proportional to 1/(ω  ω0). The optimal frequency is 834 
GHz, which is 6.1% away from resonance, so the peak entanglement 
time is reduced to 40 ps (52% decrease). For the parallel circuit, we find 
that, for all frequencies, the long ramping time negates the advantages 
of  the increased magnitude of  the RMS of  the Hamiltonian.

When engineering a resonating coupling element for spin 
qubits, it is best to avoid parallel capacitance. Although the parallel 
LC circuit offers a lower and more attainable resonant frequency, 
the requirement for C2 to equal Ceff nullifies this advantage. Under 
current parameters, the series LC circuit improves the operation time 
of  the singlet-triplet qubits by decreasing their entanglement time. 
The difficulty with this model is that Ceff dominates the resonance and 
causes the driving frequency to be too high, making it experimentally 

ω = 1 √2Ceff
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4 inaccessible. To take advantage of  the resonant speed-ups we have 
shown, one should instead inductively couple the qubits with a 
capacitance around 100 fF so that the resonance is in the GHz range. 

CONCLUSION AND FUTURE WORK

Controlling systems at the quantum level has proven to be a challenging 
task that has motivated physicists to expand their experimental 
techniques. To perform a computation, a robust quantum computer 
must entangle multiple qubits before they decohere. The number 
of  computations that a qubit system can execute is the ratio of  the 
coherence time (≈320 ns for singlet-triplet qubits) to the operation 
time (≈140 ns).6 Through simulations, the system we propose has 
been shown to improve operation time by over 50% by using an 
LC circuit amplifier to increase the coupling energy of  the singlet-
triplet qubits. Understanding the dynamics of  oscillators and other 
amplification systems can expand the ideas and strategies that go into 
building a robust quantum computer.

APPENDIX A: CHARGE DISTRIBUTION DEPENDENCE  
ON AC DRIVE

Equations 1.1–1.4 describe the charge distribution among the four 
dots when tilted with bias energy ϵ. The interaction between two 
electrons in a single DQD is described by a 4  4 orbital Hamiltonian 
with basis |S(2,0), |S(0,2), |S(1,1), |T

0:

The tilt ϵ is set to zero when U >> ϵ, and U is the on-site Coulomb 
repulsion. Diagonalizing and isolating the matrix to only represent the 

states of  interest gives the tilting angle as a function of  the bias energy:
where t 0 is the tunneling amplitude between the two singlet states and 
V+ is the Coulomb repulsion of  the S(1,1) state. The bias energy is 
driven sinusoidally such that ϵ ≈ A0 sin ωt + b0, where A0  is small and 

Horb =

U + ϵ X -√t0
0

X U - ϵ -√t0
0

-√t0 -√t0
V+ 0

0 0 0 V-

tan θ  =
2√2t0

U  ϵ  V+  √(U  ϵ  V+ )2 + 8(t 0)2
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b0 is centered when sinθ ≈ cosθ. The probability for the electron to 
tunnel as a function of  time can be approximated using a first-order 
Taylor series:

Therefore the charge configurations in Equations 1.1–1.4 are 
sinusoidal, as is the forcing function in Equations 3.1, 4.1, and 4.2, 
because F(t ) = (qa'(t )  qb'(t ))/(4πϵ0R0 ).

APPENDIX B: SOLUTIONS TO KIRCHHOFF’S EQUATION

Equation 3.2 represents the dynamics of  qubits coupled to a series 
circuit. Since F(t ) is sinusoidal, we can describe the nonhomogeneous 
driving term in the differential equation as A' sin ωt + B' where

In terms of  A'  and B', the solution to Equation 3.2 is

The differential equations in Equations 4.1–4.3 can be decoupled:

sin2 θ = +
b0  U + V+ + + (b0  U + V+ )2√8(t 0)2

2√8(t 0) + (b0  U + V+ )22

4t 0 A0 sin ωt2

(8t 0 + (B0  U + V+ )2 )3/22

4t 0 A 
(d'  d' )2

4πϵ0d'd''(8t 0 + (b0  U + V+ )2 )3/22
A' =

d'  d''
8πϵ0d'd''B' =

q(t ) =
B' ω2

ω2
0

1   B' ω2

ω2
0

1  cosω0t + A' ω
ω0

1  sin ωt

∆2

q1(t ) + ω2 =¨ 0 C2
Ceff

1 +L

F(t )F(t )¨
1

Ceff

1
C2

+
+

q2(t ) + ω2q2(t ) = ¨ 0

F(t )¨
1

Ceff

1
C2

+

q3(t ) + ω2q3(t ) = ¨ 0

F(t )¨

C2
Ceff

1 +L
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6 The solutions are found using Mathematica for qi(0) = 0 and                .

where 

When driven at resonance, ∆2 → 0, and all three solutions to Equation 
4 diverge (HRMS → ∞). 

q1(t ) = B1∆
2  B1∆

2 cos ωt  + A1ω0(C2Lω2  1)(ω0sin ωt )  ω sin ω0t

∆2 ω0L
2 C2

Ceff

1 +

q2(t ) =
A1CeffC2ω2sin ωt

∆2 (Ceff  + C2 ) 
A1CeffC2ω3sin ω0t
∆2ω0(Ceff  + C2 )

i3(t ) = d
dt

A1Ceff ω
2cos ωt

∆2 L(Ceff  + C2 ) (
A1Ceff ω

2cos ωt
∆2 L(Ceff  + C2 )

)

∆2  = ω2  ω0
2

A1 =
ACeff t 0(C2Lω2  1)2

(Ceff  + C2 )d1Lπϵ0(8t 0 + (-U + V+  + b0 )2 )3/22

B1 =  - 1
C2
Ceff

+ 1L 4πϵ0d1

ω0 =
1

√L (Ceff  + C2 )

Ceff  =  2πϵ0R0

qi(0) = 0·
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